More Branch-and-Bound Experiments in Convex Nonlinear Integer Programming
نویسندگان
چکیده
Branch-and-Bound (B&B) is perhaps the most fundamental algorithm for the global solution of convex Mixed-Integer Nonlinear Programming (MINLP) problems. It is well-known that carrying out branching in a non-simplistic manner can greatly enhance the practicality of B&B in the context of Mixed-Integer Linear Programming (MILP). No detailed study of branching has heretofore been carried out for MINLP, In this paper, we study and identify useful sophisticated branching methods for MINLP.
منابع مشابه
KKT Conditions and Branch and Bound Methods on Pure Integer Nonlinear Programming
Optimization problems are not only formed into a linear programming but also nonlinear programming. In real life, often decision variables restricted on integer. Hence, came the nonlinear programming. One particular form of nonlinear programming is a convex quadratic programming which form the objective function is quadratic and convex and linear constraint functions. In this research designed ...
متن کاملMixed integer programming with a class of nonlinear convex constraints
We study solution approaches to a class of mixed-integer nonlinear programming problems that arise from recent developments in risk-averse stochastic optimization and contain second-order and p-order cone programming as special cases. We explore possible applications of some of the solution techniques that have been successfully used in mixed-integer conic programming and show how they can be g...
متن کاملA hybrid algorithm between branch-and-bound and outer approximation for Mixed Integer Nonlinear Programming
In this work, we present a new hybrid algorithm for convex Mixed Integer Nonlinear Programming combining branch-and-bound and outer approximation algorithms in an e ective and e cient way.
متن کاملAn algorithmic framework for convex mixed integer nonlinear programs
This paper is motivated by the fact that mixed integer nonlinear programming is an important and difficult area for which there is a need for developing new methods and software for solving large-scale problems. Moreover, both fundamental building blocks, namely mixed integer linear programming and nonlinear programming, have seen considerable and steady progress in recent years. Wishing to exp...
متن کاملA generalized implicit enumeration algorithm for a class of integer nonlinear programming problems
Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...
متن کامل